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MINIMIZATION OF THE TRUNCATION ERROR BY GRID ADAPTATION 

NAIL K. YAMALEEV* 

Abstract. A new grid adaptation strategy, which minimizes the truncation error of a pth-order finite 

difference approximation, is proposed. The main idea of the method is based on the observation that the 

global truncation error associated with discretization on nonuniform meshes can be minimized if the interior 

grid points are redistributed in an optimal sequence. The method does not explicitly require the truncation 

error estimate and at the same time, it allows one to increase the design order of approximation by one 

globally, so that the same finite difference operator reveals superconvergence properties on the optimal grid. 

Another very important characteristic of the method is that if the differential operator and the metric 

coefficients are evaluated identically by some hybrid approximation the single optimal grid generator can 

be employed in the entire computational domain independently of points where the hybrid discretization 

switches from one approximation to another. Generalization of the present method to multiple dimensions 

is presented. Numerical calculations of several one-dimensional and one two-dimensional test examples 

demonstrate the performance of the method and corroborate the theoretical results. 

Key words, truncation error, grid adaptation criterion, finite difference approximation, error'equidis- 

tribution 

Subject classification. Applied and Numerical Mathematics 

1. Introduction. Grid adaptation has now become widespread for solving multi-dimensional partial 

differential equations in arbitrary-shaped domains. One of the most important problems associated with the 

adaptive grid generation is an essential effect of the grid point distribution on error in the numerical solution. 

Until the present time little attention has been paid to the fact that the concentration of grid points in regions 

which most influence the accuracy of the numerical solution may at the same time introduce additional error 

due to the grid non-uniformity [l]-[3]. 

There are two basic strategies of the grid adaptation, namely, grid refinement and grid redistribution 

techniques. In the first approach grid nodes are added to locally enrich the grid to achieve higher accuracy. 

In the second approach the number of grid nodes is fixed and the idea is to adjust the position of grid points 

to improve the numerical solution accuracy. In spite of significant distinctions, for both methods reliable 

and efficient grid adaptation criteria are needed. 

A number of grid adaptation criteria based on the equidistribution principle have been developed. As 

has been shown in [4], the grid point distribution is asymptotically optimal if some error measure is equally 

distributed over the field. One of the widely-used approaches is to redistribute grid points in accordance 

with the arc length and the local curvature of the solution curve [5], [6]. This kind of clustering is intended 

to reduce the error in the vicinity of strong gradients and local extrema of the numerical solution, but it 

does not necessarily guarantee improvement in the accuracy where the solution is smooth. 

Another class of methods is based on equidistribution or minimization of the local truncation error or 

its estimate [7]-[10].   In [7] the error estimate obtained by using a finite difference approximation of the 
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leading truncation error term is equidistributed by the grid point redistribution. Klopfer and McRae [8] 

solve a one-dimensional shock-tube problem using the explicit predictor-corrector scheme of MacCormack 

on a grid dynamically adapted to the solution. The error estimate is the leading truncation error term 

of the differential equations transformed to the computational coordinates. The metric coefficient is taken 

as a linear function of the smoothed error measure. For solving a second-order two-point boundary value 

problem with a centered second-order finite difference scheme Denny and Landis [9] suggest to determine 

the optimal coordinate mapping so that the entire truncation error vanishes at all grid points. However, 

this grid generator concentrates grid nodes where the solution is smooth rather than near steep gradients. 

Thus, the error reduction occurs in regions which do not practically affect the numerical solution accuracy. 

An alternative technique is employed in [10] where the optimal coordinate transformation is constructed as 

the solution of a constrained parameter optimization problem minimizing a measure of the truncation error. 

The error measure used is a finite difference evaluation of the third derivative of the numerical solution 

calculated in the computational space. The main drawback of all the methods mentioned above is the fact 

that the error estimates do not properly take into account that part of the truncation error which is caused 

by the nonuniform grid spacing. Furthermore, it is not clear how to extend these methods to more general 

equations and discretizations as well as to multiple dimensions. 

A grid adaptation procedure equidistributing an error estimate of the numerical solution has successfully 

been used in [11] to reduce simulation error in such integral quantities as the lift or drag. This error 

estimate is directly related to the local residual errors of the primal and adjoint solutions of the Euler 

equations. As it follows from the numerical results presented in [11], the order of accuracy of the integral 

outputs increases by one if the proposed adaptation strategy is employed. Although, this approach provides 

significant improvement in the accuracy of the functional, the error estimation procedure is quite expensive 

in terms of computational time since except for the solution of the primal problem it is needed to solve the 

adjoint Euler equations that doubles the computational efforts. 

The formulation of an adaptive mesh redistribution algorithm for boundary value problems in one 

dimension has been presented in [12]. The analysis uses the error minimization to produce an optimal 

piecewise-polynomial interpolant in a given norm that leads to the development of a family of grid adaptation 

criteria. Despite the fact that the present approach works well in one dimension this error equidistribution 

analysis can not be directly extended to multiple dimensions [13]. 

In [14] and [15] the finite element residual is applied to provide a criterion for determining where a 

finite element mesh requires refinement. As has been noted in [16] for hyperbolic problems with non-smooth 

solutions the finite element residual may be an ineffective error estimator since for such problems the residual 

measured in the L2 norm diverges whereas the numerical solution converges in this norm. The problem might 

be overcome if the divergence of the residual is localized to the area of non-smoothness and the residual 

would then be used as a local error indicator. However, the localization of discontinuities becomes a very 

complicated problem in multiple dimensions. 

It can be shown that the truncation error of any differential operator obtained on a nonuniform grid 

consists of two different parts. The first one, which always exists on a uniform mesh, is due to the ap- 

proximation of the differential operator itself. The second one is caused by the contribution to the error 

from the nonuniform grid spacing. As the grid is locally refined or redistributed the first part of the error 

decreases while the second part may considerably increase because of the grid non-uniformity. All of the 

equidistribution methods mentioned above redistribute grid points in accordance with one or another error 

estimate obtained on a non-adapted grid, but in doing so the grid adaptation itself introduces additional 



error which changes the error distribution. Therefore, to account for this change in the error distribution 

the grid adaptation procedure based on the error equidistribution strategy should be repeated iteratively 

until the error estimate norm is equally distributed over the field. Note that for moving meshes dynamically 

adapted to the solution the iterative procedure should be done at each time step to get the optimal mesh 

characterized by having the error equidistributed throughout the domain. 

The main objective of this paper is to construct an optimal coordinate transformation so that the 

leading truncation error term of an arbitrary pth-order finite difference approximation is minimized that 

provides superconvergent results on the optimal grid. In contrast to the error equidistribution principle, 

for the present technique a posteriori error estimate is not explicitly required. Furthermore, the new grid 

adaptation criterion allows one to minimize the error due to the differential operator itself and the error owing 

to the evaluation of the metric coefficients simultaneously. Another very attractive feature of the present 

approach is its applicability to hybrid approximations which depend on some basic properties of the solution 

such as a flow direction, sonic line and others. If the metric coefficients are evaluated by the same hybrid 

discretization used for the differential operator, the new grid adaptation criterion remains valid in the whole 

computational domain regardless to points where the hybrid scheme switches from one approximation to 

another. Extension of the new adaptation criterion to multiple dimensions is presented. Numerical examples 

considered illustrate the ability of the method and corroborate the theoretical analysis. 

2. Grid Adaptation in One Dimension. We consider the truncation error of the first derivative 

approximated on a ID nonuniform grid. Let x and £ denote the physical and computational coordinates, 

respectively. Without loss of generality it is assumed that a < x < b and 0 < f < 1. A one to one coordinate 

transformation between the physical and the computational domains is given by 

(2.1) x = x(0, 

where 

x(0) = a 

W ,(1) = , 
It is assumed that the above mapping is not singular so that the Jacobian of the transformation is a strictly 

positive function, i.e. 

(2.3) xs>0,    V£e[0,l]. 

The nonuniform grid in the physical space is obtained as images of nodes of a uniform mesh in the compu- 

tational domain 

(2.4) Xi = x(Zi),    & = j,    1 = 0,1,.../. 

Taking into account the coordinate transformation Eq.(2.1) the first derivative of a function f(x) with respect 

to x can be written as follows 

(2-5) /« = £. 

To construct a pth-order approximation of fx in the physical domain we approximate fe and x^ by some 

pth-order finite difference expressions in the computational domain 

i+h 
E aifi 

(2.6) Lh(fx)=    l=i~l1 
Z+7712 

/ j      Pmxn 



where xm = x{£m), fi - /(&); Lh is a finite difference operator; the indexes h,l2 and mx,m2 as well as 

the coefficients ai and ßm depend on particular approximations used for evaluating /$ and xit respectively. 

Henceforth, we shall assume that the functions /(£) and z(£) are smooth enough so that all derivatives 

needed for the derivation are continuous functions on £ € [0,1]. Expanding the nominator and denominator 

of Eq.(2.6) in a Taylor series with respect to & and omitting the index i on the right hand side yield 

E 
m=i—mi 

where 

E   ßmxm = xc + c;4P+1)Ae + 0(A^+1), 

<P+i)_d^x        (P+i) = ^\f 1 

Cf and C* are constants dependent on at and ßm, respectively.   Substituting Eq.(2.7) into Eq.(2.6) and 

taking into account that x$ > 0, V£ 6 [0,1] one can write 

Assuming that A£ is chosen to be sufficiently small so that A£p\x<f+1)/x(\ < 1, Eq.(2.7) can be linearized 

as follows 

(2.9) Lh{f.) = i (/« + C*pU*fW) (l - C-^xf*1') + OCA^1). 

Note that the error introduced by the linearization is of the order of 0(A£2p+2).  Neglecting higher order 

terms in Eq.(2.9) we have 

x(p+i) X(P+
1
) 

(2.10) Tp(x) = Lh(fx) -U = ClW-1- C^Ae^-i-fi- 
3?£ Xc 

The right hand side of Eq.(2.10) is the leading truncation error term. Thus, if the metric coefficient a^ 

is evaluated numerically as in Eq.(2.6) the asymptotic truncation error of any pth-order finite difference 
approximation consists of two different parts, one of which is due to the evaluation of /j and the second one 

is caused by the discretization of the metric coefficient x^. It should be emphasized that any grid adaptation 

based on minimization or equidistribution of the first part of the truncation error alone is not sufficient since 

the second part of the truncation error may drastically increase in regions where x(£) rapidly changes. In 
other words, any inconsistent grid adaptation transfers the error from the first term of the truncation error 

to the second one and vice versa. To minimize both parts of the truncation error simultaneously we impose 

the following restriction on the coordinate mapping x(£), V£ € [0,1] 

(2.11) |C//€
(P+1)*€ - C;x{l+1)h\ < O{A0x\. 

If Eq.(2.11) holds the asymptotic order of approximation of Eq.(2.6)-(2.7) on the optimal grid generated by 

the mapping z(£) is p+ 1 in the entire computational domain. Replacing the inequality sign by the equality 

one in Eq.(2.11) the grid adaptation criterion can be expressed as 

(2.12) Ctf^xe - C^x^fi = O(A0*|. 



Recall that the coefficients C/ and C* depend on the particular approximations used and do not depend on 

/(£) and z(£). One of the most important classes of approximation is a consistent approximation when the 

same difference operator is employed to evaluate the derivatives /? and xi. In this case the coefficients C/ 

and C* are identical and Eq.(2.12) is simplified to 

(2.13) /f+1)-/*4P+1)=°(A^ 

or setting the right hand side equal to zero yields 

(2.14) 4P+S-/44
P+1)=0. 

There are several advantages of such a simplification. First of all, the use of the same difference approx- 

imation for both /£ and xi eliminates the fx term from the truncation error which is the most troublesome 

part of the error being dependent on the first derivative which is evaluated. Actually, let us represent /5 and 

/ip+1' in terms of the x derivatives 

(2-15)    fr
i] = (^+x^)p+1/=,r)/,+(p+i)^x,/M+...+a;r^

+l) 

Note that the binomial theorem can not be used to expand the power of the derivative operator in the above 

formula since d/d£ and x^d/dx do not commute. Substituting the above expressions into Eq.(2.10) the 

leading term.of the truncation error Tp{x) can be written as follows 

(P+1) 

(2.16) T„(x) = <fll - C;)^\-U + Cl [(p + \)xffxx + • • • + *p/iP+1)] 

From Eq.(2.16) it is clear that if C/ / C* then the truncation error depends on the first derivative fx being 

approximated. That is why it is very important to evaluate the metric coefficient by the same difference 

approximation used for /£. It should be noted, that if x^ is approximated by the exact analytical expression 

or any finite difference formula different from that which is employed to calculate /$ it gives rise to the fx 

term in the truncation error. 

Another advantage of the consistent approximation of /^ and xi is that the single optimal grid in the 

sense of Eq.(2.14) can be generated for hybrid discretization, when the coefficient C/ may implicitly depend 

on the function /(£)• The identical numerical approximation of x^ and /^ removes the dependence of the 

optimal mapping on points in the physical domain where the hybrid scheme switches from one approximation 

to another. If this is the case the optimal grid point distribution depends only on the order of approximation 

and is completely independent of the particular finite difference formula used. 

As has already been mentioned, Eq.(2.14) is a grid adaptation criterion, but at the same time this 

equation can be treated as a grid generation equation. To provide the existence of the solution of Eq.(2.14) 

it is assumed that /<; > e > 0, V£ € [0,1], and /(£) € CP+1[0,1]. It can easily be seen that x(£) = 

Clf(£) + c2 is the solution of Eq.(2.14), but this trivial solution is not appropriate since it means that f(x) 

is a linear function of x in the physical space. Another problem associated with the solution of Eq.(2.14) 

is boundary conditions. Theoretically, to find the unique solution of Eq.(2.14) p + 1 boundary conditions 

should be imposed while only two boundary conditions Eq.(2.2) are available. In spite on the abovementioned 

difficulties the optimal grid generation problem Eqs.(2.14),(2.2) can be solved analytically for very important 

cases p = 1,2 and the approximate analytical solutions can be obtained for higher order discretizations p > 3. 



2.1. First-Order Approximation, p - 1. For a first-order accurate approximation p is equal to one 

in Eq.(2.13) which takes the form 

(2.17) /«a*-/«a:tt = 0(AO4 

Using the following expression for the second derivative 

r      htxz - fixii 
Jxx — x3 

Eq.(2.17) written in the physical space is reduced to 

(2.18) & = QTJJJ) • 

Integrating Eq.(2.18) and taking into account the boundary conditions £(a) = 0, £(&) = 1 yield 

(2.19) £(z) = ~b • 
J   Jxx^X 
a 

However, to satisfy Eq.(2.18) the following restriction should be imposed on fxx 

b 

(2.20) Jfzxdx = O(A0. 
a 

Since £x > 0 from Eq.(2.18) it follows that fxx > 0. Consequently, Eq.(2.20) means that the second 
derivative fxx has to be of the order of O(Af) for all x € [a, b]. In other words, if f(x) is an essentially 
nonlinear function, so that Eq.(2.20) is not satisfied, it is impossible to increase the global order of accuracy 

of fx by the grid point redistribution. 

2.2. Second-Order Approximation, p = 2. If both /£ and xt. are evaluated identically by a second- 

order accurate formula the grid adaptation equation Eq.(2.13) written for p = 2 becomes 

(2.21) /««x4 - hxm = 0(A£)xl 

Let us transform the derivatives in Eq.(2.21) from the computational space to the physical space 

(2 22) h    =    fxH 

hii    -    fxxxx\ + 3fxxX(XK + /*£«£• 

Substituting Eq.(2.22) into Eq.(2.21) we have 

(2.23) fxxxx\ + ZfxxHi = 0{M>* 

Using the following expressions for the metric coefficient and its derivative 

—     i XZ    -    Ü 
x«    =    ~^t 

and assuming that fxx / 0,Va; e [a,b] Eq.(2.23) can be rewritten as 

(2.24) ^p=3^ + 0(Afl-^- 
Jxx ?z Jxx 



Since a decrease in the last term in the above equation increases the approximation accuracy we neglect the 

0(A£) term and integrate the left and right hand sides of Eq.(2.24) with respect to x to give 

(2.25) £ = Cfxx, 

where C is a constant of the integration. Equation (2.25) has one real and two complex roots. Since we seek 

only real roots the complex roots are not considered. Taking into account the boundary conditions Eq.(2.2) 

the above equation can readily be integrated, that gives 

J(fxx)
1/3dx 

(2.26) t(x) = -b ■ 

a 

If a grid is generated in accordance with the optimal mapping Eq.(2.26) the leading term of the truncation 

error is zero for all points in [a, b] and the global order of accuracy is increased from 2 to 3. 
The optimal grid point distribution defined by Eq.(2.26) can be applied if fxx is a positive function 

otherwise the mapping becomes singular that leads to the grid degeneration. However, this problem can be 

overcome. For that purpose we divide the interval [a, 6] on subintervals where fxx is of constant signs. Let 

x\ < x < X2 be an interval where the second derivative is negative, i.e. fxx = -\fxx\ < 0- Then, Eq.(2.26) 

becomes 

J(fxx)
1/3dx      -j\fxx\^3dx      JlU^dx 

(2.27) t(x) = jz = —p = 7:  

jf {fxx)
l'3dx      - jf \fxx\V*dx      jf \fxx\^dx 

*r xi xi 

From Eq.(2.27) it follows that the metric coefficient fx given by Eq(2.26) is strictly positive in the interval 
where fxx is negative. Taking into account the fact that the same formula Eq.(2.27) remains valid for positive 

fxx the intervals of positive and negative signs except for the inflection points of the function f(x) can be 

joined so that 

E   /   \f**\1/3dx 
j x ■ +0 

(2.28) fls) =      s;+i_0 ,    Vx:x^Xj, 

E    /     \f**\1/3dx 
j    xj+0 

where Xj are the inflection points of f(x). To add the inflection points fxx(xj) = 0 to the above integrals 

special consideration is required. 
Let x0 be a point of inflection of the function f(x), i.e. fxx(x0) = 0. Note in passing that if we modify 

the function f(x) by adding an arbitrary linear function the optimal grid Eq.(2.26) remains unchanged. 

Furthermore, if the function f(x) is linear in the whole interval [a, 6] then from Eq.(2.25) it follows that 

£x = 0, Vx S [a, 6]. It results in that the grid step size in the physical domain Ax = A£/£x tends to infinity. 
It can be interpreted as to approximate the first derivative of the linear function exactly an arbitrary large 

grid spacing can be used. Expanding fxx in a Taylor series about x = x0 in Eq.(2.26) and assuming that 

fxxx(xo) ¥" 0 yield 

fxx(x) = fxxx(x0){x - x0) + 0((x - x0)
2) 



Substituting the above expression in Eq.(2.26) and neglecting both O((x-x0)
2) and higher order terms give 

(2.29) il = Cfxxx{x0){x - x0) 

Letting x -¥ xo we have 

£x(x0) = lim (Cfxxx(x0)(x - x0))
1/3 = 0 

X—i-Xo 

As noted above, this kind of grid degeneration when the metric coefficient ^ vanishes does not impose any 

restriction on the grid step size at the inflection point. Therefore, in the vicinity of the inflection point the 

original second derivative fxx can be modified as 

(2-30) f*x{x) = \   (/..)»+«'       ,.   ,.f 

where e is a small positive parameter. Prom the above consideration it follows that for an arbitrary / € 

C2[a,b] the optimal mapping minimizing the leading truncation error term globally is 

}(fxx)
1/3dx 

(2.31) fa) = -b ■ 
J(fxxy^dx 
a 

To estimate the asymptotic truncation error of the second-order difference expression for fx on the 

optimal grid Eq.(2.26) we rewrite Eq.(2.8) including the third-order terms 

(2.32) Lh{fx) = —777 + 0{A.£ ). 

Linearizing Eq.(2.32) and collecting the terms of 0(A£2) and 0(A£3) the first two leading terms in the 

truncation error are 

(2.33) T2(x) = C2^- Vutxe - xeuh] + C3^- [f^xt - 44)/«] • 

Since the first term on the right hand side of Eq.(2.33) is vanished on the optimal grid defined by Eq.(2.26) 

the asymptotic truncation error becomes 

QM) ra(») = <78^[/iS-44,A]- 

To determine the expression in the square brackets we differentiate Eq.(2.14) written for p = 2 with respect 
to f. Thus, 

(2.35) ffxi + fmXii - fexw - xf /€ = 0. 

Resolving Eq.(2.14) with respect to fet and substituting it in Eq.(2.35) give 

(2.36) f^xs - xffz = xmx}fxx. 

Using Eq.(2.36) the leading truncation error term on the optimal grid Eq.(2.26) can be recast as 

(2.37) T2(x)=C3Afxaifxx. 



Taking into account the fact that for the optimal grid Eq.(2.26) holds, x^ can be represented in terms of 

the function f(x) and its derivatives as follows 

, . _ 3£xx ~ ^xxx^x  _ Sjxxx ~ 3fx    fxx 
{t-oa) %&( — ph ~ 9C3/3 ' 

where C is the integration constant in Eq.(2.25). Substituting Eq.(2.38) into Eq.(2.37) the leading truncation 

error term is given by 

(2.39) T2(x) = C3Ae5fLl~3)f
fxX- 

This formula is valid for all points from the interval [a, b] except for the inflection points of the function f(x). 

Let us estimate the leading term of the truncation error at a point of inflection x0 : fxx(xo) - 0. Since 

we have modified the second derivative fxx in the neighborhood of the inflection point Eq.(2.30) the second- 
order term in the truncation error does not vanish. Substituting Eq.(2.30) into Eq.(2.33) and neglecting 

higher order terms we have 

m ,     x       sy   A z-2— Jxxjxxx(jxx) + (Jxx)       Jxxx T2{x0) - G2Af  ~ ■ 
Jxx 

Letting x —> XQ yields 

(2.40) ' Ta{xo)=C2A?!=$ß. 

Equation (2.40) shows that, locally, near the inflection point only the second order of approximation can be 
obtained on the optimal grid. Note that it is not the case if the function f(x) is linear because then, any 
second-order accurate approximation of /€ and x$ in Eq.(2.5) on an arbitrary nonuniform mesh gives us the 

exact value of fx. By virtue of the fact that the number of the inflection points is finite the L2 norm of the 
second-order accurate approximation of fx on the optimal grid should provide superconvergent results. 

In regions where the function f(x) is discontinuous the above reasoning is not valid since the first and 

higher derivatives do not exist there. In contrast to the inflection point in the vicinity of local extrema of 

f(x), where fxx achieves its maximum value, the fraction in Eq.(2.39) becomes very small so that locally, 

even a higher order of accuracy may be obtained. 
Remark 2.1 It can readily be checked that standard grid adaptation criteria such as the arc length of 

the function f(x) and the second derivative fxx do not globally minimize the leading term of the truncation 
error. Actually, using the arc length grid adaptation criterion the following grid point distribution is obtained 

Jy/lTJidx 
(2-41) £(x) - ° 

Jy/T+JIdx 
a 

Substituting Eq.(2.41) into Eq.(2.33) yields 

m An\ rr („\       n   A /■ 2 ~%fxfxx + 0- + fxlfxxx (2.42) T2(x) = C2A£      +        . 

The comparison of Eq.(2.42) with the leading term of the truncation error obtained on a uniform grid, which 

is 

7%n(x) = C2Aefxxx, 



shows that this grid point distribution may improve the accuracy locally near steep gradients of the function 

fix). At the same time, in regions where fxx is much grater than fx, e.g. near local extrema of fix), the 

actual order of approximation may deteriorate to one or even be worth. 
If instead of the arc length adaptation criterion one redistributes grid points in accordance with the 

second derivative fxx the leading term of the truncation error is 

(2.43) T2(x) = -C2A£2%^. 
XX 

As it follows from the above formula in regions where |/M| < \/2 the local truncation error Eq.(2.43) is 

always grater than the asymptotic truncation error on a uniform grid. 
Summarizing what has been said above the following conclusions can be drawn. On the one hand, the 

standard grid adaptation criteria do not provide the superconvergence. On the other hand, although, the 
standard grid adaptation techniques may locally improve the accuracy of calculation the global truncation 

error may become even larger than that obtained on the corresponding uniform mesh. Despite the fact that 
the above consideration has been performed for the second-order discretization the same conclusion can be 

done for higher order schemes. 
Remark 2.2 We shall now briefly describe an alternative way of the solution of Eq.(2.21). Integrating 

Eq.(2.21) by parts and neglecting the 0(A£) term on the right hand side yield 

(2.44) faxt - fax = C, 

where C is a constant of the integration. The above equation is closed by using the boundary conditions 

Eq.(2.2). 
In order to find the unknown constant C we rewrite Eq.(2.44) in the following form 

(2-45) *7rA£)=C' '•d£ \xs 

Taking into account the fact that 

Jxx — 11 (k 
a* 9f \Xi 

Eq.(2.45) is reduced to Eq.(2.25) and the constant C can easily be determined, that gives 

/   6 \3 

(2.46) 

The boundary value problem Eq.(2.44),(2.46),(2.2) should be solved numerically. If at some point /€ and f^ 

are equal to zero simultaneously Eq.(2.44),(2.46) is degenerated. The problem can be overcome by modifying 

the derivatives /$, fe and the constant C as follows 

7 fx fx 
h = 

/«  = 

I* iCfxx)1'* 

fxxtx ~ Zxxfx 3(/xi)    ~ fxxxfx 
$ C»/3(/M)5/8 

10 



Jeu*)1' C=\      (fxx)^
3d: 

where fxx is given by Eq.(2.30), fx and fxxx are calculated by differentiating and integrating fxx with respect 

to x, accordingly. Since the function fxx is strictly positive in the entire computational domain the first 

derivative /^ is a positive function as well. It makes the modified equation fully consistent with Eq.(2.31). 

It should be stressed that there are several differential forms of the optimal grid generation equation. 

For example, instead of integration of Eq.(2.21) by parts we may consider Eq.(2.23) as a differential equation 

for the optimal grid point distribution. Since each of the differential equations has its advantages and 

disadvantages at the present time, it is difficult to say which one of them is better. 

2.3. High-Order Approximations, p > 3. If /$ and x$ are approximated identically by a third-order 

accurate formula the optimal grid generation equation written in operator form in the physical space is 

(2.47) LA. 
Ax 9x 

n4 

f-fx £xdx 

n4 

x = 0. 

Performing the indicated differentiation we have 

(2.48) fxx (15& - 4&&M) + & (-6£M/*x* + &/i4)) = 0       ' 

Although, the above equation is much more complicated than the analogous one derived for the second-order 

discretizations Eq.(2.24) we shall construct the solution of Eq.(2.48) in a similar form. On the one hand, 

a solution in the form of £ = g{fx), where g is an arbitrary function of fx, is not appropriate since in this 

case the /i4) term in Eq.(2.48) can not be canceled. On the other hand, if a solution depends on fxxx or 
higher derivatives of f(x) it gives rise to the fx

5^ term in the truncation error which is not canceled as well. 

Therefore, we shall seek the solution of Eq.(2.48) in a form similar to Eq.(2.25) 

(2.49) U=CU*x)a- 

Substituting Eq.(2.49) into Eq.(2.48) the leading truncation error term can be written as 

(2.50) T3(x) = {fxlyf2a [«(2 - Ha)(/M,)a + (4a - 1)/**/«] 

In contrast to the second-order discretization, for the third-order approximation the leading term of the 

truncation error does not vanish at any a — const. Assuming that the parameter a(x) is a function which 

weakly depends on x and setting the leading truncation error term equal to zero the following quadratic 

equation for a(x) is obtained 

(2.51) a(x)(2 - lla(x))(fxxx)
2 + (4a(x) - l)/«*/i4) = 0 

The solution of Eq.(2.51) is 

(2.52) ai,2 = -Ij- (l + 2r{x) ± y/l - 7r{x) + 4r(x)2) , 

with 

f    f(4) 
/   \ Jxxjx 

\Jxxx) 
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Without loss of generality it is assumed that fxxx ^ 0. If fxxx = 0 then the solution of Eq.(2.51) is a = 1/4. 

Note that the function a(x) should be positive in the entire physical domain otherwise, the mapping Eq.(2.49) 

with a < 0 concentrates grid points where f(x) is linear and makes the grid very coarse where the second 

derivative fxx is large. Since the above analysis is valid if the function a(x) slightly depends on x we construct 

a as follows 

(2.53) a(r) = < 

i (1 + 2r + v7! - 7r + 4r2) 
48    3   ,   18 

"343'     T 49 22 r + _2_ 
11' 

r <0 

0<r <l 
_L (1 + 2r - Vl - IT + 4r2),     r >i 

where the polynomial in Eq.(2.53) has been chosen so that a(r) is a continuously differentiate function of 

r. A plot of a versus r is shown in Fig.2.1. As can be seen in the figure, the function a{r) is practically 

equal to 1/4 in the whole range of r except for an interval -1 < r < 3. Although, a(r) is quite smooth the 

function a(x) may be non-smooth because it depends on fxx, fxxx and /|4) which are calculated numerically 

and may therefore be very oscillatory. In numerical applications the function a(x) should be smoothed to 

meet the requirements used for the derivation of Eq.(2.50). 

0.5 r 

0.4 - 

0.3 
RJ 

a 

0.2 

0.1 

-10 10 

FIG. 2.1. Parameter a for a third-order accurate discretization. 

Such a choice of a(x) provides that the leading truncation error term is approximately equal to zero 

in the entire physical domain. As it follows from Eq.(2.49), the second derivative fxx must be a positive 

function on [a, b]. Note that a general property of both Eq.(2.47) and Eq.(2.14) is that if &, is a solution 

of Eq.(2.47) then -£„ is a solution of Eq.(2.47) as well. The same is true for the function f(x) and its 

derivatives, i.e. if we substitute fxx = -fxx into Eq.(2.47) we get the same equation in terms of fxx. Hence, 

the second derivative fxx in Eq.(2.49) can be replaced with Eq.(2.30). Thus, if /c and x4 are evaluated by 
the same third-order accurate formula the optimal grid point distribution, which minimizes the leading term 
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of the truncation error in the entire computational domain, is 

(2.54) ««) = a-b , 
SihxY^dx 

where fxx and a(x) are defined by Eq.(2.30) and Eq.(2.53), respectively. 
From the above analysis one can see that the same strategy used for the third-order approximation can 

be applied to higher order discretizations. Actually, the leading term of the truncation error for an arbitrary 

pth-order approximation of fx is 

(2.55) ^)=^(/rs-/^r)) 
Accounting for the following relations between the £- and a;-derivatives written in operator form 

d__}_d_ 
d~Z ~ & dx 

£x dx 

the truncation error can be transformed into the physical space as follows 

(2.56) Tp(x) = CpA^k £xdx 

p+i 

f-fx 
i_d_ 
ixdx 

p+1 

Expanding the power of the derivative operator 

lP+i rr ,   o i     = 1P+1 

1 £     a™ 

(2.57) SI 
dx 

[k~£i~\ f -[[ldx\Xdx\ 

it can be seen that the term with fx in Eq.(2.56) is canceled and therefore the highest derivatives of £(z) 

and f(x) in the truncation error Tp(x) are ^p) and fx
p+1), respectively. Assuming that on the optimal grid 

the leading term of the truncation error is of the order of 0(Af) we shall seek £(x) as a function of f(x) 

and its derivatives. Comparing the highest derivatives of f and / one can observe that if ^ = g{f, fx) 

then the term fx
p+1) in Eq.(2.57) is never canceled while if £x is a function of fx

n\ n > 3 it introduces the 
uncancellable fx

n+v~l) term in the truncation error Tp(x). In a similar manner to the first-, second-, and 

third-order approximations the optimal grid for the pth-order accurate discretization is sought in the form 

of Eq.(2.49). Substituting Eq.(2.49) into Eq.(2.57) the leading truncation error term becomes 

(2.58) Tp(x) = g^g ([1 - a(p + 1)] /i"+1> + aG(a, fxx, fxxx,..., /£»)) 

In the above formula it has already been taken into account that the second term on the right hand side is 

proportional to a. This is no surprise since for a = 0, which corresponds to a uniform mesh, the asymptotic 

truncation error Tp{x) is reduced to CpA^/iP+1) that is why all the terms in Eq.(2.58) except for /iP+1) 

have to be proportional to a. For example, for fourth- and fifth-order discretizations the leading truncation 

error terms obtained on the optimal grid Eq.(2.49) are 

(2.59) T4(x) = 
e4Ae4 

(Jxx) 
(1 - 5a) /i5> + a { -10a(l + 5a) ^^ + 5(9a - l)Jx   Jx 

[Jxx) fx 
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and 

T6(x) = §f^r ((1 - 6a)/i6) + a {(6 + 49a + 196a2 + 274a3)g 
(3)\4 

03 

v       7 _(7 + 97a + 421a2)^i- +3(270-2)^^+2(260-1)^%^}], 

respectively. As it follows from Eq.(2.58) at any a = const both terms on the right hand side do not vanish 

simultaneously. To minimize the leading term of the truncation error the following procedure is proposed. 

At each grid point the parameter a is found as the solution of the nonlinear equation T(a) = 0, which is 

solved by the Newton's method. That choice of a provides that the leading truncation error term is vanished 

on the optimal grid. Since the above consideration is valid only if a slightly depends on x the function a(x) 

has to be smoothed in numerical applications. 
Remark 2.3 If p -¥ +oo, i.e. the order of approximation is infinitely large the leading term of the 

truncation error Eq.(2.58) is vanished for a -»• 0. In other words, the higher is the order of approximation 

used to evaluate /$ and x? the more uniform is the grid which minimizes the leading truncation error term. 

In the limit of infinitely high-order approximations a uniform grid is optimal in the sense of minimization of 

the asymptotic truncation error. 

3. Grid Adaptation in Multiple Dimensions. The two-dimensional transformation of the first 

derivative is given by 

(3.1) /. = ^^, 

where the Jacobian of the transformation is 

3 = xiyn-xnyi. 

Approximating the f and 7? derivatives in Eq.(3.1) by some pth- and gth-order finite difference formulas, 

respectively, we get 

h{fx) ~ (x, + cu*xW)<3h + cqAV^
+1)) - (*, + CAn"^+1)){yi + aA^+1)) 

(3.2) 
In the above expression it has already been taken into account that the metric coefficients xity^ and xv,yv 

are evaluated by the same finite difference operators which are used for calculating /j and fv, respectively. 
In view of the fact that the mapping used is nonsingular J > 0, the denominator of Eq.(3.2) can be 

linearized that yields 

Lh(fx) =    i [ynh - Vdn + CpA?{ynft+1) ~ V^fv) + C^U^ ~ Vif^)] * 
(3-3) [l - ^(^4P+1) - y^xr,) - ^(^^+1) - 2/c4?+1))] + 0(A?+\ AV"+1) 

Multiplying out the terms in the square brackets and neglecting higher order terms the leading term of 

truncation error becomes 

(3-4) +CqAr,< [/^+1> - y^
q+1) ~ M*^* ~ y^9+1))\} 

As in the ID case, the truncation error Tp,„ consists of two different parts, one of which arises from the 

evaluation of the metric coefficients xi,y^,xri,yri and the second one occurs due to the approximation of/^ 
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and /„. From Eq.(3.4) it follows that if the absolute value of the first expression in the square brackets is less 

than 0(A£) and the abolute value of the second one is less than O(Ari) then the global truncation error is 

0(A£P+1, Ar)q+1) rather than 0(A£P, A77«). Thus, to increase the order of the finite difference approximation 

Eq.(3.2) by one globally grid points should be redistributed so that the following equations hold 

J (v4p+1) - *tl)f*) = Mi ~ %/*) Mp+1) - **0 + °MJ2 

(3-5)       J-(/€^ - %/rl})=(3hh - KM M9+1) - y^9+1))+°^J2 

Removing the parentheses and rearranging the corresponding terms Eq.(3.5) can be reduced to 

'^+1)-fyyi9+1)-fA9+1)\=0(Ar,)J 
Vn 

(3.6) 

Note that a reduction of the 0(A£) and O(Arj) terms in Eq.(3.6) decreases the truncation error on the 

optimal grid. 
The above equations can be treated as the optimal grid generation equations in the sense of minimization 

of the leading truncation error term. It should be noted, that if y^ - 0 in the entire computational domain 

Eq.(3.6) is reduced to Eq.(2.14). At the same time, if the y coordinate does not depend on 77, i.e. y = y(£) 

Eq.(3.6) is simplified to 

(3.7) *„/<»+1) - fA9+1) = 0(AV)xl 

that can be treated as an analog of Eq.(2.13) in the 77 coordinate. 

Another very useful property of the optimal mapping is that Eq.(3.6) are invariant with respect to both 

translation and stretching of the x, y and £, 77 coordinates. Summarizing the above properties of Eq.(3.6) one 

may conclude that the 2D optimal grid generation equations are fully consistent with the ID counterpart 

Eq.(2.14). 
The present approach can directly be extended to three dimensions.   Actually, the three-dimensional 

transformation of the first derivative is 

(3.8) /. = ÄIÄ/< + K*^/, + ÄÄ/c 

where the Jacobian of the mapping is given by 

J = xiyr,z( + xvy<;zt + x^zv - x^z,, - x^Z( - xc,ynz^. 

With pth-, qth-, and rth-order finite difference approximations for the f-, 77-, and ^-derivatives, respectively, 

we have 

{ö(zöyy - StySyzfof + {6cy6zz - 6(z6(:y)övf + (6vz6t:y - ör,y6tz)6cf     |g^tP+i^1?i+i|Af+1), 
LhUx) - SixSriyS(Z + SqxStfSzz + ö^yönz - Ö^x5cyövz - övx5iyS(z - ö^xS^ö^z 

(3.9) 

where the differential operators 6%, 6V, and 6^ are defined by 

«^ = s? + CP^Pd^TT 

(3.10) 6r, = -§-n+CqAvq^ 

S( = gf + CrACrg^fT. 

Here, Cp, Cq, and Cr are constants dependent on particular pth-, gth-, and rth-order finite difference 

approximations which are applied to discretize the £-, 77-, and C-derivatives, accordingly. In Eq.(3.9),(3.10) 
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it has already been accounted for that the metric coefficients are approximated by the same finite difference 

expressions which are used for evaluating /j, fv, and fc. 
Having linearized the fraction in Eq.(3.9) the leading truncation error term is written as 

TMAt,v,0 =  h {c,*? [if+1) - Jt1]f*} + c^9 fi9+1) ~ J^'-]+ 

(3-U) +CrAc[F^-JJ;r+1)fx}}, 

where 

P^ = tf+1\zm - zc%) + i/lrWe - Hk) + 49+1 W< - V<fi) 
Mr+D = *+%M - Vvze) + „<r+1 W„ - z„ft) + 4r+1)(y,h - vM 

(3.12) ^p+1) =   Ui)(zcl/fj _ y(Zn) + yf^(zvx( - zcxv) + z<f+1\yixv - »,*<) 

j(«+x) = xlq+1\zm - zm) + i/Jfl+1)(zcx€ - ztx() + 49+1W - 1/C*«) 
j(r+D = x^){zvyi _ ^) + y£+l\ziXv - znx{) + Z^HviXt - ViXv) 

Similarly to the ID and 2D cases described above the leading term of the truncation error Eq.(3.11) can be 

divided into two parts. The first part, which also exists on a uniform mesh, is due to the approximation of 
/^, fn, and fc. The second part, which is vanished on a uniform Cartesian mesh is caused by the evaluation 

of the metric coefficients. From Eq.(3.11) it is apparent that if a grid is constructed so that the first term 

in the square brackets is of the order of O(Af), the second one is of the order of O(Arj), and the third one 

is of the order of 0(AQ for all f G [0,1], i) e [0,1], and C e [0,1] then the global order of approximation 

of the difference operator Eq.(3.9) in f, j], and £ on the optimal grid is increased from p, q, and r to p + 1, 
q + 1, and r + 1, respectively. Hence, in the sense of minimization of the leading truncation error term the 

grid adaptation criteria are 

(3.13) 

(3.14) 

(3.15) 

Note that the above equations are not a system of equations and can be considered separately. If it is 

necessary to improve the accuracy with respect to the £ coordinate alone a grid should be generated so that 

only Eq.(3.13) holds. However, if it is desirable to increase the order of approximation of fx by one in the 

f, rj, and £ coordinates simultaneously then the grid has to obey the system of equations Eq.(3.13)-(3.15). 
As in the case of two dimensions the 3D grid adaptation criteria Eq.(3.13)-(3.15) can be simplified. After 

the substitution of Eq.(3.12) in Eq.(3.13)-(3.15) and considerable algebraic manipulation the grid adaptation 

equations can be rewritten in a very compact form 

p(p+l). -fj(p+1)=O(A0J 

p(Q+l) . - fJ(q+1) = 0{Ari) J 

P(r+1) _ - fJt+l) = 0{AQJ. 

{HVn ~ V<zv) 

(3.16) (ycz4 - zcVi) 

(znVi - yvzz) 

/<p+1) - fJ[+1) - fyyt1] ~ f^+1)} = °(A$J 

where fx, fy, and fz are the first derivatives with respect to the x, y, and z coordinates, respectively. One of 

the characteristic features of the above equations is that they do not depend on the coefficients Cp,Cq, and 
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Cr. Consequently, if in each spatial direction the metric coefficients and the first derivatives of /(£, T), () are 

evaluated consistently by some hybrid finite difference operators then the grid adaptation criteria Eq.(3.16) 

can be applied in the whole computational domain regardless of points where the hybrid scheme switches 

from one approximation to another. A comparison of Eq.(3.16), Eq.(3.6), and Eq.(2.13) shows that the 3D 

grid adaptation criteria Eq.(3.16) are reduced to Eq.(3.6) if zi=zr) = 0, zc ^ 0, while if in addition to these 

conditions we require that % = y( = 0, yn / 0 Eq.(3.16) are reduced to the ID optimal grid generation 

equation Eq.(2.13). In a similar manner as Eq.(2.13) and Eq.(3.6), it is easy to prove that Eq.(3.16) are 

invariant with respect to stretching and translation of both the physical and computational coordinates. 

As it follows from the analysis presented in the foregoing section the grid adaptation equation does not 

assure that the coordinate mapping obtained as the solution of Eq.(2.14) is not singular. Since Eq.(3.16) 

is converted to Eq.(3.6) and in its turn Eq.(3.6) is reduced to Eq.(2.14) if the dimension of the space is 

decreased by one, the same singularity may occur in two and three dimensions as well. 

Equations (3.6) and (3.16) have to be closed by corresponding boundary conditions. Since these equations 

are (p + l)th-order partial differential equations p+1 boundary conditions should be imposed at each couple 

of the opposite boundaries (i.e. £ = 0 and £ = 1; r] = 0 and r\ = 1; C = 0 and C = 1) to find the unique 

solution. However, at each boundary we have only one boundary condition. For example, in the 3D case in 

the £ coordinate we have 

(3.17) £(x,y,z)=0,    £(x,y,z) = \. 

In other words Eq.(3.6) and Eq.(3.16) are not closed. The situation becomes even more uncertain when 

only one of the grid adaptation criteria is used. However, this uncertainty gives us additional degrees of 

freedom and at the same time, it is conceivable that there exists more than one optimal grid satisfying the 

criteria Eq.(3.6) or Eq.(3.16). From this standpoint both Eq.(3.6) and Eq.(3.16) should be treated as the 

grid adaptation criteria rather than the optimal grid generation equations. 

One of the most general structured grid generation strategies is based on the variational approach 

proposed by Brackbill and Saltzmann in [17]. In this method a grid is generated as the solution of the 

minimization problem. By forming the variational principle using a linear combination of the integral 

measures of smoothness, orthogonality, and adaptation, a system of elliptic equations is derived. The new 

grid adaptation criteria can be incorporated into this approach by constructing an integral measure of 

adaptation so that the Euler-Lagrange equations associated with the minimization of this integral alone give 

us Eq.(3.16). On the one hand, the minimax principle guarantees that the coordinate mapping obtained as 

the solution of this minimization problem is not singular. On the other hand , the new grid adaptation criteria 

provide that the leading term of the truncation error is minimized so that the finite difference approximation 

Eq.(3.9) calculated on the optimal grid exhibits superconvergence properties. 

Remark 3.1 In spite on the fact that the present analysis has been performed for the first derivative 

fx it can be directly extended to an equation or a system of equations, which can be represented as 

(3.18) fx(x) =d(x). 

For example, for the steady state ID Burgers equation written in conservation law form we have 

where p is a positive constant. A comparison of Eq.(3.19) and fx shows that for the Burgers equation the 
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optimal grid can be constructed using Eq.(2.54) with 

.. ,     u2       du 
(3.20) /(«) = T-^- 

It should be pointed out that the above conclusion is valid if the second derivative uxx = (ux)x and the 

convective term (u2/2)x are approximated consistently. 

The same approach can be applied to the Euler and Navier-Stokes equations. The ID Euler and Navier- 

Stokes equations can be written in conservation law form as 

(3-21) ä£=0, 

where F is the inviscid flux F; for the Euler equations and F; - F„, where F„ is the viscous flux, for the 

Navier-Stokes equations. As it follows from Eq.(3.16), any component of the vector F can be chosen as a 

function with respect of which a grid is adapted. Although, that choice provides increase in accuracy for 

this particular vector component but it may not result in decrease in the truncation error for the remaining 

vector components. In fact, as there are components of the vector F as many the optimal grids can be 

generated. Since the different vector components may have strong gradients and local extrema in different 

regions of the physical domain this kind of grid adaptation is not effective. If this is the case the function 

f(x) can be obtained by using the method of least squares. Because of the optimal grid generation equations 

are invariant with respect to stretching of the function f(x) the vector components Fn, n = 1,N can be 

normalized as 

\Fn(x)\ 
(3.22) Fn(x) = 

max|F„(a;)| 

It results in that all of the vector components are of the same order and, consequently, make proportional 

contributions to the function f(x). The resulting function f(x) is obtained as the solution of the following 

minimization problem 

1      N    , N.2 

(3.23) J2 X) (-Fnto) ~ f(xi))   -* min 

z=0 n=l 

in the least square sense. The function / constructed in this fashion allows one to generate a grid which is 

optimal for the whole vector F rather than for its particular component. Note that the power in Eq.(3.23) 

should be chosen in accordance with the power of the Lk norm in which the solution of the Euler or Navier- 

Stokes equations is sought. 

4. Results and Discussion. To validate the applicability and efficiency of the new method several 

ID and one 2D test examples are considered. For each ID test function five series of calculation on different 

grids with the same number of grid points have been executed. The first one is done on a uniform grid. 

The second one uses the standard grid adaptation criterion based on the arc length or the second derivative 

of the test function. The third one is performed on the optimal grid obtained as the analytical solution of 

Eq.(2.14). The fourth one employs the optimal grid Eq.(2.54) generated numerically by using the following 

approximation for the second derivative 

,     ,       hjfj+i - (hj + hi+1)fi + hj+ifj-i      .._„.__. 
(4"1} {fxx)i = hihi+1(hi + hi+1)/2 '    h>-X*    X'-U 

which is reduced to the second-order three-point central approximation of fxx if an equispaced grid in the 

physical domain is used. The integrals in Eq.(2.54) is computed using the trapezoidal rule integration. As 
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a result of this integration the strictly increasing function £(x) is obtained which is then reversed by using 

a third-order accurate piecewise spline interpolation. The fifth calculation is also executed on the uniform 

grid, however, instead of a pth-order approximation a (p + l)th-order accurate dicretization is applied to 

calculate both fe and a^. At each boundary one-sided pth-order differences are used for /j and xc. 
In order to estimate the accuracy of the method the pth-order finite difference approximation of fx is 

compared with the exact value of the first derivative calculated at the same grid node in the L2 norm. The 
order of approximation is estimated on successively refined grids the coarsest one of which contains 20 cells 

and the finest one has 2560 cells. 

4.1. ID Test Examples. Second-order approximation, p = 2 
The first test example is evaluation of the first derivative of f(x) = xm, 0 < x < 1 by using a second- 

order central differences for /? and x?. When m is sufficiently large this function has a boundary layer of 

width 0(l/m) near x = 1. For this test case the exact optimal grid point distribution defined by Eq.(2.21) 

can be found analytically, which is 

(4.2) zopt(0 = £m+1 

In contrast to [9] the new grid adaptation criterion provides the concentration of grid nodes near the boundary 

layer of the function f(x). 

-© Uniform, 2nd order 
a   Numerical optimal 
■♦  Analytical optimal 
■T  Standard 
A  Uniform, 3rd order 

1.5 2 2.5 3 

log10(Cells) 
3.5 

FIG. 4.1. Error convergence for a second-order approximation of fx, f(x) = xm calculated on: 1) uniform grid, 2) optimal 

grid generated numerically, 3) analytical optimal grid, 4) grid adapted in accordance with the arc length criterion, 5) uniform 

grid using third-order accurate discretization. 

An error convergence plot for this test function is presented in Fig.4.1. As one might expect, the L2 

norm of the truncation error calculated on a uniform grid exhibits the 0(A£2) convergence rate which is 

consistent with the second order of accuracy of the central differences. However, the same second-order 

approximation of fx on the optimal grid Eq.(4.2) exhibits the convergence rate which is even higher than 
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0(A£3). Although, the accuracy of fx obtained on the adaptive grid Eq.(2.26) with fxx evaluated by Eq.(4.1) 

is slightly less compared to the optimal grid Eq.(4.2) results the order of approximation is about 3.5. To show 

the superiority of the present method over the standard grid adaptation criterion Eq.(2.41) the truncation 

error calculated on grids adapted in accordance with the arc length of f(x) is also shown in Fig.4.1. In 

spite of the fact that the standard grid adaptation technique slightly improves the accuracy of calculation in 

comparison with the equispaced grid point distribution the convergence rate is less than 0(Af2). We want 

to emphasize that the new grid adaptation criterion Eq.(2.26) provides not only superconvergent results, but 

on the finest mesh it reduces the error by 6 orders of magnitude compared to the uniform grid results. 

An advantage of the consistent grid adaptation Eq.(2.14), which is based on the fact that the truncation 

errors due to the approximation of /$ and xi cancel each other, becomes obvious when the optimal grid results 

are compared with those obtained by using a third-order accurate approximation on a uniform grid. Figure 

4.1 shows that both the second-order approximation on the optimal grid and the third-order discretization 

on the uniform grid with the same number of grid points reveal the 0(A£3) convergence rate. However, the 

optimal grid results are about 103 times more accurate. 

It should be noted that the optimal grid Eq.(4.2) is essentially non-smooth and does not meet the 

standard criterion of smoothness, which is \xK/x^\ < 0(1) [18]. Furthermore, the optimal mapping Eq.(4.2) 

is singular at the point £ = 0 where x$ -> oo. In spite on this fact, the above comparisons corroborate the 

theoretical analysis and demonstrate the advantage of the new grid adaptation criterion over the standard 

approaches. 

1p 

0 

-1 

-2 

-3 

§ .4 
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D) o 

-Q  Uniform, hybrid 
-■  Optimal, consistent 
-♦  Optimal, inconsistent 

■  ■  i  ■ J_ _i_i_L 
1.5 2 2.5 

log10(Cells) 

_u 
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FIG. 4.2. Error convergence of a second-order hybrid approximation calculated with the consistent and inconsistent dis- 

cretizations of the metric coefficient on the optimal and uniform grids. 

Another very useful characteristic feature of the new method is its generality in the sense that if a 

single second-order hybrid discretization is used for both /$ and x^ the same optimal mapping Eq.(4.2) 

minimizes the leading truncation error term.   To demonstrate this property the error convergence of the 
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hybrid approximation obtained on the uniform and optimal grids with the same number of grid points are 

depicted in Fig.4.2. The hybrid difference operator is constructed as follows 

(4.3) -L \    = I     2Af (^+J d£ fi-i), i even 

S7(-3/i+4/i+i-/i+2),     i  odd 2A£ 

The identical approximation is employed for the metric coefficient x^. A comparison shows that the global 

order of the consistent approximation of fe and x? is increased by one on the same optimal grid Eq.(4.2) 

used for the non-hybrid approximation. As has been shown in Section 2, the approximation of the metric 

coefficient and the first derivative /$ should be the same otherwise the optimal mapping defined by Eq.(2.26) 

does not minimize the leading truncation error term. To show that the discretiztion of the metric coefficient 

plays a crucial role in reduction of the truncation error we approximate x% by a two-point central difference 
expression in the whole computational domain and use the same hybrid scheme Eq.(4.3) for fe. An error 

convergence plot for this inconsistent approximation, which is also depicted in Fig.4.2, shows that if the 
metric coefficient are evaluated in a different way than /? the order of approximation on the optimal grid 

deteriorates to 2 as well as the truncation error increases by a factor of 103 compared to the consistent 

discretization results. 

The second test function considered is 

(4.4) /(*) = (em - l)x + 1' 
0<a;< 1. 

-e- Uniform, 2nd order 
Numerical optimal 
Analytical optimal 
Standard 
Uniform, 3rd order 
Numerical optimal, iterated 

1 

log10(Cells) 

FIG. 4.3. Error convergence for a second-order approximation of fx, f(x) = l/((em - l)x + 1) calculated on: 1) uniform 

grid, 2) optimal grid generated numerically, 3) analytical optimal grid, 4) 9™d adapted in accordance with the arc length 
criterion, 5) uniform grid using third-order accurate discretization, 6) numerical optimal grid generated iteratively. 

In the present test example the parameter m was chosen to be 5. This function has a boundary layer 

of width 0(m/(em - 1)) at x = 0. For this function the optimal grid generation equation Eq.(2.14), which 
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depends on the order of approximation rather than on a particular type of discretization, can be solved 

analytically, that gives 

emi - 1 
(4.5) "opt (0 = l 

It should be emphasized that Eq.(2.26) yields the same optimal mapping as Eq.(4.5). The optimal grid 
Eq.(4.5) is the well-known exponential coordinate transformation, which is widely used in the literature 

[1], [18] for solving boundary layer problems. However, the mapping Eq.(4.5) is optimal only for a special 

class of functions such as Eq.(4.4) and not optimal for other functions. Similarly to Fig.4.1 and 4.2, error 

convergence plots for the symmetric second-order and hybrid discretizations Eq.(4.3) are depicted in Fig.4.3 

and 4.4, respectively. It is apparent in these figures that the error obtained on the optimal grid reveals 
the convergence rate of 0(A£35) that is even higher than it follows from the theoretical analysis. The 

optimal grid point distribution constructed by the numerical integration of Eq.(2.26) reduces the truncation 

error by about four orders of magnitude compared to the uniform grid results, but it does not provide 

the same accuracy as the optimal grid Eq.(4.5). The accuracy can be improved if the following iterative 

procedure is applied. Since the fxx approximation Eq.(4.1) depends on the grid spacing in the physical 

domain, the second derivative can be updated when the new grid point distribution is found. For this test 

problem about 15-20 iterations were needed to reach the convergence. No attempt was made to optimize the 

iteration process. Referring to Fig.4.3 one can see that this procedure considerably increases the accuracy 

and provides practically the same convergence rate as for the analytical optimal grid Eq.(4.5). 

-©  Uniform, hybrid 
-■-— Optimal, consistent 
-♦  Optimal, inconsistent 

1.5 2 2.5 3 
log10(Cells) 

FIG. 4.4. Error convergence of a second-order hybrid approximation calculated with the consistent and inconsistent dis- 

cretizations of the metric coefficient on the optimal and uniform grids. 

The importance of the metric coefficient evaluation is illustrated in Fig.4.4. Analogously to the foregoing 

test case, the inconsistent discretization of /^ and x$ leads to decrease in both the order and accuracy of 

the approximation. When the metric coefficient and the first derivative /j are evaluated by using the same 
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hybrid operator Eq.(4.3) the convergence rate obtained on the optimal grid Eq.(4.5) becomes 0(A£3). 

Prom the present theoretical analysis it follows that the new grid adaptation strategy may be quite 

sensitive to the inflection points of the function f(x). In order to verify this conclusion the following function 

(4.6) f(x) = 2 [sin(3ma;) - 27sin(ma;)],    0 < x < ir, 

which has m inflection points has been chosen as a test function. Despite the presence of the inflection points 

where fxx = 0 it is possible to construct the optimal mapping analytically without using Eq.(2.30). It can 

be done if the optimal grid Eq(2.26) is generated in each interval of constant signs of fxx separately. Thus, 

we have 

(4.7) xopt (0 = -(j - 1) + -J- arccos [2 j - 2m£ - 1],     3-^ < £ < ; j = l,m. 

In numerical calculations the parameter m was taken to be 5. The above optimal coordinate transformation 

obeys Eq.(2.26) in the entire physical domain except for the inflection points. 

-1r 

©  Uniform, 2nd order 
-m  Numerical optimal 
-♦  Analytical optimal 
-T  Standard 
-A  Uniform, 3rd order 

1.5 2 2.5 3 

log10(Cells) 

FIG. 4.5. Error convergence for a second-order approximation of fx, calculated on: 1) uniform grid, 2) optimal grid 

generated numerically, 3) analytical optimal grid, 4) grid adapted in accordance with the arc length criterion, 5) uniform grid 

using third-order accurate discretization. 

Figures 4.5 and 4.6 are analogous to Fig.4.1 and 4.2, accordingly. As one can see in Fig.4.5 the presence 

of the inflection points results in that the convergence rate is 0(Af25) that is lower than it is predicted 

from the theoretical analysis. Nevertheless, the optimal grid adaptation reduces the truncation error by a 

factor of 20 compared to the uniform grid results. One of the reasons of such a behavior is the fact that 

high-order derivatives of the function f(x) Eq.(4.6) are well bounded that makes the approximation of fx 

on the uniform grid sufficiently accurate. The use of the standard grid adaptation criterion based on fxx 

Eq.(2.30) leads to deterioration of the convergence rate to 0(A£115) and at the same time, the L2 norm of 

the truncation error is about 50 times less accurate than the uniform grid results. Figure 4.6 shows that the 
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inconsistent approximation of /£ and x^ increases the truncation error by 5 orders of magnitude compared 

to the consistent approximation results calculated on the optimal grid. 

-e- 
Or 

Uniform, hybrid 
Optimal iterated, consistent 
Optimal iterated, inconsistent 

2.5 

log10(Cells) 

FIG. 4.6. Error convergence of a second-order hybrid approximation calculated with the consistent and inconsistent dis- 

cretizations of the metric coefficient on the optimal and uniform grids. 

To gain greater insight into where the maximum error occurs pointwise error distributions obtained 

on both the uniform and optimal grids are shown in Fig.4.7. As expected, the truncation error calculated 

on the optimal grid achieves its maximum values at the inflection points, while the error on the uniform 

grid occurs at points where the third derivative \fxxx\ is large. In contrast to the uniform grid, the most 

accurate approximation of the first derivative fx on the optimal grid is near the local extrema of f(x). For 

demonstrating the gain in accuracy in the vicinity of the inflection points due to the use of Eq.(2.30) instead 

of fxx a pointwise error plot obtained in this case is also presented in Fig.4.7. It is significant that the error 

distribution obtained on the optimal grid is essentially nonuniform that gives an indication of the difference 

between the present and equidistribution grid adaptation criteria. 

From the practical point of view it is very important to improve the accuracy of calculation if the function 

f(x) is discontinuous. In spite of the fact that the present analysis is not valid at discontinuities of f(x) it 

can be used if the discontinuous function is approximated by some smooth one. In this test example the 

following smooth function 

, N      2ex [17 + 73(er)2 + 55(ez)4 + 15(ex)6]      2 .    . i /    ^ i 
(4-8) /(*) = —± 1^(1 +(J)»)« ^-arctantez),    -1<*<1 

is considered as a fitting of a step function. In this calculation the parameter e was taken to be 103 that 

results in that the function Eq.(4.8) has a pronounced interior layer of width 0(l/e) at x = 0. This function 

has been chosen so that the optimal grid point distribution Eq.(2.26) can be integrated analytically. As in 

the foregoing example, the singularity in the optimal mapping Eq.(2.26) due to the inflection point at x = 0 

can be overcome by generating the optimal grid in the -0.5 < x < 0 and 0 < x < 0.5 intervals separately, 
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Uniform 
 Analytical optimal 
 Numerical optimal iterated 

FIG. 4.7.  Pointwise error distribution for a second-order approximation calculated on the analytical optimal, numerical 

optimal, and corresponding uniform grids. 

that gives 

(4.9) XoptiO = ■Ü 
-M- 

\l~-\ 
T+2eH> 
2f-l 

0 < £ < 0.5 

0.5<£<1. 1+2^(1-?)' 

The error convergence of the symmetric second-order discretization of fx evaluated on the optimal grid 

Eq.(4.9) is compared with results obtained by second- and third-order approximations on a uniform grid as 

well as with the truncation error calculated on grids generated by using the standard Eq.(2.41) and new 

Eq.(2.26),(2.30) grid adaptation criteria in Fig.4.8. Because of the internal layer thickness is comparable 

with the finest grid spacing none of the uniform grids considered can provide second-order results. For 

the analytical optimal grid the convergence rate is of the order of 0(A£2'5). Although, it is less than the 

theoretical limit the truncation error on the finest mesh (2560 cells) has been reduced by more than 5 orders 

of magnitude compared to the uniform grid results. Since the standard grid adaptation criterion Eq.(2.41), 

which is widely used to improve the resolution near steep gradients of the solution, does not provide the 

cancellation of the leading truncation error term these results are about 2 orders of magnitude less accurate 

than those obtained on the optimal grid Eq.(2.26),(4.1),(2.30) as is evident in Fig.4.8. 

A comparison of the hybrid approximation Eq.(4.3) on different grids and using different approximations 

for the metric coefficient x$ is presented in Fig.4.9. If /^ and xi are evaluated identically the same optimal 

grid Eq.(4.9) provides superconvergent results, while if these approximations are different the convergence 

rate is even less than 0(A£2). 

High-order approximations, p > 3 

For a third-order discretization the optimal grid generation equation Eq.(2.51) can not be solved ana- 

lytically, however, the solution can be found in the approximate form of Eq.(2.53),(2.54). The same function 
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FIG. 4.8. Error convergence for a second-order approximation of fx, calculated on: 1) uniform grid, 2) optimal grid 
generated numerically, 3) analytical optimal grid, 4) grid adapted in accordance with the arc length criterion, 5) uniform grid 

using third-order accurate discretization. 

Eq.(4.4), which has been used in the second example is taken as a test function. The first derivative /^ and 

the metric coefficient are evaluated by a third-order accurate formula as 

1 
(4.10) (&); 6A£ 

(-2#j_i - 3pj + 6gi+i - gi+2), 

where g(£) is either /(£) or x(£). 

Figure 4.10 shows error convergence plots obtained on the optimal Eq.(2.53),(2.54) and uniform grids 

with the same number of grid cells. Although, for the mapping Eq.(2.53),(2.54) the leading term of the 

truncation error is approximately equal to zero the error convergence rate obtained on the optimal grid is 

about 0(A£3-8) that corroborates the theoretical results. Note that the same iterative technique used earlier 

for the second-order approximations can be applied in the present case as well. However, due to the fact that 

the optimal coordinate transformation Eq.(2.53),(2.54) is the approximate solution of Eq.(2.51) the iterations 

do not practically improve the accuracy of calculation and therefore, these results are not presented here. 

The truncation error can be reduced if the optimal grid generation equation Eq.(2.48) is solved numer- 

ically. To avoid the solution of the third-order differential equation a new dependent variable u(x) = £,, is 

introduced. Then Eq.(2.48), which is a second-order differential equation in terms of u(x), is integrated nu- 

merically on a uniform grid constructed in the physical domain. To close Eq.(2.48) the metric coefficient ^ is 

taken to be proportional to (fXx)l/i at the boundaries. The metric coefficient £x found this way is integrated 

and the optimal grid point distribution is obtained by a third-order accurate piecewise spline interpolation 

of the function £(z). As one can see in Fig.4.10, these optimal grid results exhibit the convergence rate of 

essentially 0(A£4) and provide higher accuracy than those calculated on the optimal grid Eq.(2.53),(2.54). 

To demonstrate the superiority of the optimal grid adaptation over the equispaced grid point distribution 

an error convergence plot of a symmetric fourth-order accurate approximation of fx calculated on a uniform 
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FIG. 4.9.  Error convergence of a second-order hybrid approximation calculated with the consistent and inconsistent dis- 

cretizations of the metric coefficient on the optimal and uniform grids. 

grid with the same number of grid points is also depicted in Fig.4.10. The L2 norm of the truncation error 

of the third-order approximation Eq.(4.10) on the optimal grid is reduced by a factor of several hundred in 

comparison with the fourth-order accurate results obtained on the uniform grid. 

Error convergence plots for the following hybrid approximation 

(4.11) 
gij (-2/j_i - 3/i + 6/i+i - fi+2), i  even 

5^5 (-11/i + 18/i+i - 9/i+2 + 2/i+3),     i odd 

calculated on the optimal and corresponding uniform grids are shown in Fig.4.11. The optimal grid results 

are about 4-5 orders of magnitude more accurate than those obtained on the finest uniform grid. However, if 

the metric coefficient is evaluated by Eq.(4.10) in the entire computational domain while the approximation 

of fe remains the same Eq.(4.11) the error convergence rate of this inconsistent discretization becomes even 

less than 0(A£3) as the grid is refined. 

The next test example is a fourth-order accurate approximation of the first derivative of the function 

f(x) = xm, where the parameter m has been chosen to be 49. The first derivatives f$ and x$ are discretized 

by a five-point symmetric approximation 

(4.12) (gi)i 12Af 
(gt-2 - 8gi-i + 8gi+i - gi+2). 

where g(£) is either /(£) or x(£). It can be shown that if the order of approximation p is an even number 

then for f(x) = xm the optimal grid generation equation Eq.(2.14) can be solved analytically. Thus, we have 

(4.13) x0pt(o = im+i- 

The above mapping is optimal in the sense of the minimization of the leading truncation error term if m > p 

otherwise any pth-order accurate difference expression approximates the first derivative fx exactly. If we fix 
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FIG. 4.10. Error convergence for a third-order approximation of fx, }(x) = xm calculated on: 1) uniform grid, 8) optimal 
grid generated numerically, 3) analytical optimal grid, 4) grid adapted in accordance with the arc length criterion, 5) uniform 

grid using fourth-order accurate discretization. 

the parameter m to be sufficiently large one can observe that as the order of approximation p is increased 
the optimal grid Eq.(4.13) becomes more uniform that correlates with the above theoretical analysis. The 

optimal grid point distribution can also be calculated numerically by using Eq.(2.54). At each grid point 

the unknown parameter a(x) is found as a solution of the equation 

(4.14) T4(a) = 0, 

where T^a) is given by Eq.(2.59). For this particular choice of the function f(x), Eq.(4.14) can be solved 

analytically that yields 

1 m 
a = —- 

<4-15) -     5m-2" 

Note that the optimal mapping Eq.(2.54),(4.15) is identical to Eq.(4.13) if we set p - 4 in it. Error 
convergence plots calculated on the analytical Eq.(4.13) and numerical Eq.(2.54),(4.15) optimal grids as well 
as on the corresponding uniform grid are shown in Fig.4.12. As one can see in this figure the fourth-order 

approximation Eq.(4.12) on the optimal grid Eq.(4.13) exhibits even a higher convergence rate than 0(A£5) 

that allows one to reduce the L2 norm of the truncation error by 6 orders of magnitude compared to the 
uniform grid results. The numerical approximation of both the second derivative and the integral in Eq.(2.54) 

leads to that the optimal grid Eq.(2.54),(4.15) generated numerically provides superconvergent results only 

on coarse grids while as the grid is refined the order of approximation deteriorates to 4. Nevertheless, the 

evaluation of fx on the 80-cell optimal grid Eq.(2.54),(4.15) is about 3 orders of magnitude more accurate 

than that on the uniform grid with the same number of grid points. One of the main reasons of such a 
behavior is an error introduced by the numerical approximation of fxx in Eq.(2.54). As mentioned above, 

the optimal mapping Eq.(4.13) is singular at £ = 0 that considerably decreases the accuracy of the fxx 
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FIG. 4.11.  Error convergence of a third-order hybrid approximation calculated with the consistent and inconsistent dis- 

cretizations of the metric coefficient on the optimal and uniform grids. 

approximation Eq.(4.1). This perturbation introduced into the optimal grid by the numerical evaluation 

Eq.(4.1) destroys the superconvergence property. However, if one uses the exact expression for fxx despite 

that the integral in Eq.(2.54) and x(£) are calculated numerically, the order of approximation is practically 

recovered to its optimal value that can be seen in Fig.4.12. 

To demonstrate the importance of the consistent approximation of /^ and x£ error convergence plots 

calculated using different hybrid approximations on the optimal and corresponding uniform grids are depicted 

in Fig.4.13. The fourth-order accurate hybrid approximation is constructed as follows 

(4.16) (h)i = j^ (-3/i-l - 10/i + 18/i+l - 6/i+2 + fi+3) .. 

1  even 

i  odd 

If the metric coefficient x^ is evaluated by the same difference expression employed for the first derivative 

/? Eq.(4.16) then the leading term of the truncation error is vanished on the optimal grid Eq.(4.13). It is 

evident in Fig.4.13 that the truncation error of the consistent hybrid approximation of /^ and x^ exhibits 

the convergence rate of 0(A£5). At the same time, if the metric coefficient is discretized by the symmetric 

fourth-order accurate formula Eq.(4.12) in the entire computational domain, while the same approximation 

Eq.(4.16) is used for fiy the convergence rate deteriorates to 0(A£4) and the truncation error increases by 

a factor of 50-100 in comparison with the consistent approximation results. The deterioration of the error 

convergence rate on the finest optimal mesh is presumably caused by the machine accuracy. 

4.2. 2D Test Example. We shall seek a particular solution of Eq.(3.6) in the following form 

(4.17) 
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FIG. 4.12. Error convergence for a fourth-order approximation of fx, f{x) = xm calculated on: 1) uniform grid, 2) 
optimal grid generated numerically, 3) analytical optimal grid, 4) grid adapted in accordance with the arc length criterion, 5) 

uniform grid using fifth-order accurate discretization,6) numerical optimal grid generated with the exact fxx. 

where a, ß, and 7, (j>, 0, %l> are given and unknown constants, respectively. Note that this choice of /, 
x, and y uniquely defines the function f(x,y) in the physical domain. Since the above mapping must be 

nonsingular the Jacobian of the mapping, which is 

(4.18) Jtf.i?) = W - ffle^'W***», 

should be positive in the whole computational domain that leads to 

(4.19) ^-<t>6> 0. 

Substituting Eq.(4.17) into the first equation of Eq.(3.6) yields 

(4.20) (7^ - <f>0)a3 = (-(f>a + jß)93 + {ipa - 0ß)-/3. 

Equation (4.20) together with the constraint Eq.(4.19) give us a family of the optimal grids. The equation 

is simplified considerably if we assume that <f> = ip = ß - 1. Under this assumption Eq.(4.20) and (4.19) are 

reduced to 

(4.21) (7 _ e)a3 = (7 - a)63 + (a - 0)7
3 

(4.22) 7 - 0 >0, 

correspondingly. Equation (4.21) has three real roots 

71 = a — 6 

(4.23) 72 = 0 
73 = a 
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FIG. 4.13.   Error convergence of a fourth-order hybrid approximation calculated with the consistent and inconsistent 

discretizations of the metric coefficient on the optimal and uniform grids. 

The roots 72 and 73 are not appropriate because the second root does not meet the inequality Eq.(4.22) 

while the third root implies that f(x) - x. Therefore, the only non-trivial solution of Eq.(4.21), (4.22) is 

<y + e = a. Introducing a parameter m so that 7/Ö = m the particular solution of Eq.(3.6) can be written in 

the following form 

(4.24) 

z0pt(£,»?)=e-+°4e'> 

Vopt{£,n) = e^e" 
f{x,y) =x   —ij/».-i . 

In the present test example the parameters m and a have been chosen to be 10 and 3, respectively. The 

corresponding optimal 41 x 21 grid and 30 isolines of the function f(x,y) are depicted in Fig.4.14. It is 

notable that the optimal grid is orthogonal neither in the domain nor at the boundaries. Moreover, the grid 

lines are concentrated near strong gradients and at the same time, they are not strictly aligned to the isolines 

of f(x, y). A second-order accurate approximation of fx is obtained by using two-point central differences for 

all the derivatives in Eq.(3.1). A uniform grid is generated by the transfmite interpolation of the boundary 

nodes, which are uniformly distributed along the boundaries. Since the optimal grid Eq.(4.24) has been 

constructed under the assumption that the leading term of the truncation error in the £ coordinate vanishes 

on the optimal grid we shall refine the grid only in £ while the number of grid cells in 77 is fixed and equal 

to 20. Note that the grid refinement in the rj coordinate makes no influence on the convergence rate of the 

truncation error that is consistent with Eq.(3.6). 

A comparison of the truncation error convergence obtained on the optimal and uniform grids is shown in 

Fig.4.15. Similarly to the ID test examples, the global order of the symmetric second-order approximation 

in two dimensions is increased by more than one on the optimal grid. Furthermore, the L2 norm of the 

truncation error is about 4 orders of magnitude less than that obtained on the corresponding uniform grid. 
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FIG. 4.14. Optimal 40 x 20 grid and 30 isolines of the function f(x). 

As can be seen in Fig.4.15, the new grid adaptation criterion enables one to reach the asymptotic convergence 

rate on coarse grids while the application of a third-order accurate discretization on the uniform grid does 

not permit us to get so essential reduction in the truncation error as on the optimal grid. 

The importance of the identical approximation of the first derivatives /{ and fv and the metric coefficients 

X£, y$, and xn, yv, respectively is illustrated in Fig.4.16. The figure shows that if fe, x$, and y^ are evaluated 

by the same hybrid discretization Eq.(4.3) the order of approximation in £ is increased by one if grid points 
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FIG. 4.15. Error convergence for a second-order approximation of fx calculated on: 1) uniform grid, 2) analytical optimal 

grid, and 3) uniform grid using third-order accurate discretization. 

are redistributed in accordance with Eq.(4.24) regardless what second-order approximations are used for /,,, 

x„, and yv. However, if the metric coefficients x$ and y$ are evaluated by the two-point symmetric second- 

order difference expression in the entire computational domain, whereas both the hybrid approximation of /^ 

Eq.(4.3) and the optimal grid Eq.(4.24) remain the same, the order of approximation of fx in £ deteriorates 

to 2 and the truncation error is increased by a factor of 103. 

5. Conclusion. The new grid adaptation strategy based on the minimization of the leading truncation 

error term of an arbitrary pth-order finite difference discretization has been developed. The basic idea of the 

method is to redistribute grid points so that the leading truncation error terms due to the differential operator 

and the metric coefficients cancel each other so that the design order of approximation on the optimal grid 

is increased by one in the entire computational domain. In contrast to most of the adaptive grid techniques, 

for the present method neither the truncation error estimate nor the specification of weighting parameters is 

required. Another very attractive characteristic of the new approach is its applicability to hybrid discretiza- 

tions. It has been proved that if the differential operator and the metric coefficients are evaluated identically 

then the same optimal grid adaptation criterion, which is valid for non-hybrid discretizations, can be used 

in the entire computational domain regardless of points where the hybrid difference operator switches from 

one approximation to another. One of the main advantages of the new method is that it can be directly 

extended to multiple dimensions. It has been shown that the multidimensional grid adaptation criteria are 

fully consistent with the one-dimensional counterpart. The ID and 2D numerical calculations show that 

the truncation error obtained on the optimal grid is both superconvergent and reduced by several orders 

of magnitude in comparison with the uniform and standard adaptive grid results for all the test examples 

considered. 
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FIG. 4.16.   Error convergence of a second-order hybrid approximation calculated with the consistent and inconsistent 

discretizations of the metric coefficient on the optimal and uniform grids. 

Acknowledgments. The author would like to thank J.L. Thomas and M.H. Carpenter for many helpful 

discussions. 

REFERENCES 

[1] J.F. THOMPSON AND C.W. MASTIN, Order of difference expressions on curvilinear coordinate systems, 

in Proc. ASME Fluid Engrg. Conf. Advances in Grid Generation, Houston, June 1983, p. 17. 

[2] J.D. HOFFMAN, Relationship between the truncation errors of centered finite-difference approximation 

on uniform and nonuniform meshes, J. Comput. Phys., 46 (1982), p. 469. 

[3] E. TURKEL, Accuracy of schemes with nonuniform meshes for compressible fluid flows, ICASE Report 

No. 85-43, (1985), p. 48. 

[4] I. BABUSKA AND RHEINBOLDT, A-posteriori error estimates for the finite element method, Int. J. 

Numer. Methods Engrg., 12 (1978), p. 1597. 

[5] A.B. WHITE, On selection of equidistributing meshes for two-point boundary-value problems, SIAM J. 

Numer. Anal., 16, No. 3 (1979), p. 472. 

[6] H.A. DWYER, Grid adaptation for problems in fluid dynamics, AIAA J., 22, No. 12 (1984), p. 1705. 

[7] M. LETINI AND V. PEREYRA, An adaptive finite difference solver for nonlinear two-point boundary 

problems with mild boundary layers, SIAM J. Numer. Anal., 14, No. 1 (1977), p. 91. 

[8] G.H. KLOPFER AND D.S. MCRAE,  The nonlinear modified equation approach to analyzing finite 

diffrence scheme, AIAA Paper No. 81-1029, (1981), p. 317 

[9] V.E. DENNY AND R.B. LANDIS, A new method for solving two-point boundary-value problems using 

optimal node distribution, J. Comput. Phys., 9 (1972), p. 120. 

[10] B. PlERSON AND P. KUTLER, Optimal nodal point distribution for improved accuracy in computational 

34 



fluid dynamics, AIAA J., 18, No. 1 (1980), p. 49. 

[11] D. VENDITTI AND D. DARMOFAL, A multilevel error estimation and grid adaptive strategy for improving 

the accuracy of integral outputs, AIAA Paper No. 99-3292, (1999). 

[12] G.F. CAREY AND H.T. DINH, Grading functions and mesh redistribution, SIAM J. Numer. Anal., 22, 

No. 5 (1985), p. 1028. 

[13] K. CHEN, Error equidistribution and mesh adaptation, SIAM J. Sei. Comput., 15, No. 4 (1994), p. 798. 

[14] W. RHEINBOLDT, Adaptive mesh refinement processes for finite element solutions, Int. J. Numer. Meth- 

ods Engrg., 17 (1981), p. 649. 

[15] G.F. CAREY AND D. HUMPHREY, Mesh refinement and iterative solution methods for finite element 

computations, Int. J. Numer. Methods Engrg., 17 (1981), p. 1717. 

[16] A. MACKENZIE, D.F. MAYERS, AND A.J. MAYFIELD, Error estimates and mesh adaptation for a cell 

vertex finite volume scheme, Notes on Numerical Fluid Mechanics, 44 (1993), p. 291. 

[17] J.U. BRACKBILL AND J.S. SALTZMAN, Adaptive zoning for singular problems in two dimensions, J. of 

Comput. Phys., 46 (1982), p. 342. 

[18] J.F. THOMPSON, Z.U.A. WARSI, AND C.W. MASTIN, Numerical Grid Generation: Foundation and 

Applications, North Holland, p. 483, 1985. 

35 


